スタンダード

スタンダード樹脂は、幅広い用途に使用可能なモデルを作成することができます。

造形後の洗浄工程のみでも精細な仕上がりを誇りますが、二次硬化することで、引張強度や曲げ弾性においてABSを上回る物性を実現しています。以下の材料特性は、スタンダード材料のすべて(透明、白、灰色、黒色)に共通しています。

■物理的性質

	二次硬化前 ²	二次硬化後3	試験方法
最大引張強度	38 MPa	65 MPa	ASTM D 638-10
引張弾性率	1.6 GPa	2.8 GPa	ASTM D 638-10
破断時の伸び	12 %	6 %	ASTM D 638-10
曲げ弾性率	1.3 GPa	2.2 GPa	ASTM D 790-10
アイゾット衝撃値	16 J/m	25 J/m	ASTM D 256-10
荷重たわみ温度(高荷重)	42.7 °C	58.4 °C	ASTM D 648-07
荷重たわみ温度(低荷重)	49.7 °C	73.1 ℃	ASTM D 648-07

- 1. 材料のプロパティは各試験方法に準じた試験片の値です。モデルの形状、印刷方向、印刷設定および温度によって異なります。
- 2. 二次硬化前の数値は、造形後は通常の洗浄および乾燥のみの状態で測定したものです。(造形条件: $Form\ 2$ を使用、積層ピッチ $100\,\mu m$)
- 3. 二次硬化後の数値は同条件で造形し、二次硬化させたモデルから得た値です。

(二次硬化条件:モデル表面積 1cm²あたり波長 405nm の LED を出力 1.25mW で 60 分間照射、庫内温度設定 60°C)

■化学的適合性

10 mm 角の立方体を、造形+二次硬化後に各液体に浸して 24 時間後に計測した重量の増加率

酢酸 (5%)	< 1
アセトン	割れ
イソプロピルアルコール	< 1
塩素系漂白液(~ 5%)	< 1
酢酸ブチル	< 1
軽油	< 1
ジエチレングリコールモノメチルエーテル	1.7
油圧オイル	< 1
Skydrol 5	1

過酸化水素(3%)	< 1	
イソオクタン	< 1	
石油	< 1	
食塩水 (3.5 %)	< 1	
水酸化ナトリウム	< 1	
(0.025 %, pH = 10)	<u> </u>	
水	< 1	
キシレン	< 1	
強酸(塩酸)	歪み	

