カーボン3Dプリンタ Anisoprint Composerシリーズ

CFC+FDMの仕組み

  • CFC+FDMのヘッド構造
  • 本体背面

CFC+FDMでは、CFC用2種類(繊維・樹脂)とFDM用1種類(樹脂)の材料を組み合わせてプリントします。 材料供給用のフィーダは3本、材料出力用のノズルは2本搭載されています。2本のノズルからは、エクストルーダ内でCFCの複合材料とFDMの樹脂材料をそれぞれ押し出します。 プリント中は、モデルの形状(積層位置)や構成要素に応じ、2つのノズルを自動的に切り替えながら材料が積層されます。

モデルの構成要素について
  • モデル構成(材料別)
  • モデル構成(要素別)

CFCを使用したプリントでは、形状や設定内容に応じて次のような要素から成るモデルが作成され、その構成によって強度や表面仕上げなどが決定されます。これらの要素は自動もしくは手動で設定することが可能です。
なお、設定可能な要素や項目数については、スライスソフト「Aura」のライセンス形態により異なります。

【主な構成要素】
■CFC(複合材料)
・Reinforced infills:インフィル(ソリッドまたはラティス)
・Reinforced perimeters:モデル内の強化用輪郭
■FDM(樹脂材料)
・External shell:モデル表面
・Plastic perimeters:モデル内の強化用輪郭
・Solid plastic infill:インフィル(ソリッド)
・Cellular plastic infill:インフィル(ラティス)

形状に応じて樹脂の押出量を自動でコントロール

“そのまま”の複合材料ではラティス形状は作れない
  • そのまま積層した際の交差部イメージ
  • 交差部に厚みが出てしまっている例

複合材料は繊維材料が樹脂(マトリックス材)でコーティングされたもので、溶融された樹脂材料同士が溶着することでプリントします。しかしそのままでは、軽量化のために不可欠なラティスを形成することができません。
これは、1層の中でラインを交差させるラティス構造では、交差部には材料が多く重なってしまうためです。層の中の一部が極端に厚みを持った状態になると、ヘッドが移動中に衝突したり、層間が空くことでモデル強度の低下を招いたりするおそれがあります。

樹脂量の調整でラティス構造化を実現
  • Composerで積層した際の交差部イメージ
  • 交差部がフラットになっている

Anisoprint Composerでは、形状に応じて、マトリックス材の押出量を自動調整することができます。
CFCの採用により、厚みの出やすい交差部とそれ以外の部分で樹脂の量が増減するため、層ごとの高低差を抑えて積層することが可能です。
これにより、モデルを変形させることなくプリントでき、複合材料でのラティス構造化を実現することができます。

使用材料に合わせて選べる3つのライセンス

Aura画面イメージ

スライスソフト「Aura」には、対応材料が異なる3つのライセンスが用意されています。
デフォルトの設定で手軽にプリントを開始したり、プロファイルを登録して強度や特性を検証したりすることができ、ニーズに合わせた選択が可能です。

>> 各ライセンスの比較はこちら

ライセンス比較
NEAT(無償)

メーカー純正の材料を使用してプリントを行います。
使用できる材料は限られていますが、材料とプリント条件が最適化されているため、安定した強度・表面品質でプリントすることが可能です。
プリセットが登録されているため、プリントデータを読み込むだけで素早くプリントを開始できます。

EXT(有償)

メーカー純正樹脂に加え、あらかじめ登録されている市販のフィラメントを使用することができます。
CFCとFDMの組み合わせは同じ樹脂同士のみに限られますが、必要に応じて任意の条件を設定することが可能です。
NEATの「手軽さ」に、使用できる樹脂が増える「自由」が付加され、選択の幅が広がります。

OPEN(有償)

設定項目が開放されたオープンパラメータ仕様で、全ての項目を編集することができます。
材料の制限が解除されるほか、材料の特性やモデルの仕上がりに合わせて、CFCとFDMで異なる樹脂を使用することも可能になります。
また、プロファイルを追加できるため、検証や研究用途などに対応可能です。